If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+9t-450=0
a = 4.9; b = 9; c = -450;
Δ = b2-4ac
Δ = 92-4·4.9·(-450)
Δ = 8901
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8901}=\sqrt{9*989}=\sqrt{9}*\sqrt{989}=3\sqrt{989}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-3\sqrt{989}}{2*4.9}=\frac{-9-3\sqrt{989}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+3\sqrt{989}}{2*4.9}=\frac{-9+3\sqrt{989}}{9.8} $
| 2r/9=9/(2r-3) | | 4^(9-3x)=64 | | a^2-10a-30=0 | | I=119x-237,524 | | 4w/1=1 | | 4-5m=5 | | (2x+2)=84 | | -63-14x=-84x | | X+(2x+2)=84 | | 2.2=3x-5.3 | | 7x-4=-2x+6 | | 8x+10=4x+20 | | 8x+10=4x+35 | | 8x+10=4x+40 | | 5(3+6x)-3=132 | | 5(3+6x)-3=32 | | 12y-12=9 | | X-18y=0 | | 20x+10=30x+20 | | 20x+5=30x+20 | | 20x+5=30x+10 | | 6m+14=86 | | 1=1+x/15 | | -6.5(x-4)=19.5 | | -11=p-18 | | 3^2=4^2=x^2 | | 15g+37=98 | | 13 17+t=29 34 | | 5n=-2n+7n | | 6-4(3x-3)=30 | | 6-4(3x-3=30 | | f(-1)=4*7^2 |